Justifying new consumption meters

Vilnis Vesma, 6 May 2005

Additional metering may be required for all sorts of reasons. There are three relatively clear-cut cases where the decision will be dictated by policy:

The fourth case is where metering is contemplated purely for detecting and diagnosing excessive consumption in the context of a targeting and monitoring scheme. This may well be classified as discretionary investment and will require justification. This could be based on a rule of thumb, or on the advice in the Building Regulations (for example). A more objective method is to identify candidates for submetering on the basis of the risk of undetected loss (RUL). The RUL method attempts to quantify the absolute amount of energy that is likely to be lost through inability to detect adverse changes in consumption characteristics. It comprises four steps for each candidate branch:
  1. Estimate the annual cost of the supply to the branch in question (see below).
  2. Decide on the level of risk (see table below) and pick the corresponding factor.
  3. Multiply the cost in step 1 by the factor in step 2, to get an estimate of the annual average loss.
  4. Use the result from step 3 to set a budget limit for installing, reading and maintaining the proposed meter.
Risk Typical characteristics Suggested
factor*
High Usually associated with highly-intermittent or very variable loads under manual control, or under automatic control at unattended installations (the risk is that equipment is left to run continually when it should only run occasionally, or is allowed to operate 'flat out' when its output ought to modulate in response to changes in demand). Examples of highly-intermittent loads include wash-down systems, transfer pumps, frost protection schemes, and in general any equipment which spends significant time on standby. Typical continuous but highly-variable loads would include space heating and cooling systems. It should be borne in mind that oversized plant, or any equipment which necessarily runs at low load factor, is at increased risk. 20%
Medium Typified by variable loads and intermittently-used equipment operating at high load factor under automatic control, in manned situations where failure of the automatic controls would probably become apparent quickly. 5%
Low Anything which necessarily runs at high load factor (and therefore has little capacity for excessive operation) or where loss or leakage, if able to occur at all, would be immediately detected and rectified. 1%

*Note: the risk percentages are suggested only; the reader should use his or her judgment in setting percentages appropriate to individual circumstances

The RUL method tries to quantify the cost of not having a meter, but this relies on knowing the consumption in the as-yet-unmetered circuit. The circular argument has to be broken by estimating consumption: